SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), PUTTUR

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu) (Accredited by NAAC with "A*" Grade & ISO 9001: 2008 Certified Institution)

QUESTION BANK (DESCRIPTIVE)

Subject with Code: DIGITAL CIRCUITS (23EC0447)

Course & Branch: B. Tech -EEE

Year & Semester: III - B. Tech. & I-Semester Regulation: R23

UNIT I LOGIC SIMPLIFICATION AND COMBINATIONAL LOGIC DESIGN

PART-A (2 MARKS)

1.	State De-Morgan's theorem.	[L1][CO1]	[2M]
2.	What is the concept of duality in Boolean algebra.	[L1][CO1]	[2M]
3.	Express the function Y=A+B'C in canonical POS.	[L1][CO2]	[2M]
4.	Simplify the following Boolean expression into one literal. W'X (Z'+YZ) + X (W+Y'Z).	[L2][CO2]	[2M]
5.	Show how to connect NAND gates to get an AND gate and OR gate?	[L2][CO1]	[2M]

1.	(a)	State and prove the De-Morgan's Theorem with truth tables.	[L3][CO1]	[5M]
	(b)	State and prove the Consensus theorem.	[L3][CO1]	[5M]
2.		Simplify the following Boolean expression: (a) F = (A+B)(A'+C)(B'+C'). (b) F = XY+XYZ+XYZ+XYZ'+X'YZ	[L3][CO2]	[10M]
3.	(a)	Simplify the following Boolean functions to minimum number of literals (i) $xyz + x'y + xyz'$. (ii) $xz + x'yz$.	[L3][CO2]	[5M]
	(b)	Simplify the following Boolean functions to minimum number of literals: F = ABC + ABC' + A'B	[L3][CO2]	[5M]
4.		Express the function Y=A+B'C in (i)Canonical SOP form (ii) Canonical POS form	[L2][CO1]	[10M]
5.		Explain about Logic gates. with symbols and truth tables.	[L2][CO1]	[10M]
6		Minimize the following Boolean function using K-Map. $F(A, B, C, D) = \Sigma m(0, 2, 4, 6, 8, 10, 12, 14)$.	[L3][CO1]	[10M]
7.		Simplify the following Boolean expressions using K-map. $F(A, B, C, D) = \pi M(0.2.3.8.9.12.13.15)$	[L3][CO1]	[10M]
8.	(a)	Simplify the following expression using the K-map for the 3-variable. Y = AB'C+A'BC+A'B'C+A'B'C'+AB'C'	[L3][CO1]	[5M]
	(b)	Simplify the following Boolean expressions using K-map. $F(A, B, C, D) = \Sigma m(1,3,7,11,15)$	[L3][CO1]	[5M]
9.		Implement the function $F(A,B,C,D) = \Sigma(0,2,5,7,8,10,13,15)$ using a 4-variable Karnaugh map	[L2][CO1]	[10M]
10.		Realize the Boolean function $F(A,B,C) = \Sigma(0,1,2,5,7)$ using (i) AND-OR realization and (ii) NAND-only realization.	[L2][CO1]	[10M]

UNIT II INTRODUCTION TO COMBINATIONAL DESIGN 1

PART-A (2 MARKS)

1.	Determine the Boolean expression for a half adder and full adder	[L1][CO2]	[2M]
2.	State the principle of a BCD adder.	[L1][CO2]	[2M]
3.	Convert the binary number 1011 into Gray code	[L1][CO3]	[2M]
4.	Convert the Gray code 1101 into binary.	[L1][CO3]	[2M]
5.	What is the need for a seven-segment display decoder?	[L1][CO3]	[2M]

1.	Design & implement Half Adder and Full Adder with truth table.	[L3][CO3]	[10M]
2.	Design & implement Half Subtractor and Full Subtractor with truth table.	[L3][CO3]	[10M]
3.	Design a BCD adder using two 4-bit binary adders and necessary correction logic.	[L3][CO3]	[10M]
4.	Design of a 4-bit binary-to-gray code converter with truth table and logic circuit.	[L2][CO3]	[10M]
5.	Explain the concept of BCD addition and design a BCD adder circuit.	[L2][CO3]	[10M]
6.	Distinguish between half adder and full adder with circuit diagrams.	[L2][CO3]	[10M]
7.	Design of a 4-bit gray-to-binary code converter with truth table and logic circuit.	[L2][CO3]	[10M]
8.	Write short notes on: (a) Half adder and full adder (b) Binary subtractor (c) Seven-segment display	[L2][CO3]	[10M]
9.	Design a BCD to Excess-3 code converter using logic gates.	[L3][CO3]	[10M]
10.	Explain with truth table the working of a BCD to seven-segment display decoder and k- map for segments a, b and Draw the logic circuit.	[L2][CO3]	[10M]

UNIT III COMBINATIONAL LOGIC DESIGN 2

PART-A (2 MARKS)

1.	Define a decoder and mention one of its applications.	[L1][CO4]	[2M]
2.	What is a priority encoder? Give an example of its use.	[L1][CO4]	[2M]
3.	State the difference between multiplexer and demultiplexer.	[L1][CO4]	[2M]
4.	Write the truth table of a 2-bit comparator.	[L1][CO4]	[2M]
5.	Mention one real-life application of a demultiplexer.	[L1][CO4]	[2M]

1.		What is Decoder? Design the circuit for 3to 8 decoder with truth table.	[L1][CO4]	[10M]
2.		What is Encoder? Design the circuit for Octal to Binary encoder with truth table.	[L1][CO4]	[10M]
3		What is Priority Encoder? Design 4 input Priority Encoder.	[L1][CO4]	[10M]
4.		Design 32:1 Mux using two 16:1 Muxs and one 2:1 Mux.	[L3][CO4]	[10M]
5		What is Demultiplexer? Desingn1:8 Demultiplexer using 1:4 Demultiplexers.	[L2][CO4]	[10M]
6.	(a)	Write the difference between Multiplexer and De-multiplexer.	[L2][CO4]	[5M]
	(b)	Design the 4:1 MUX and explain its operation in detail.	[L3][CO4]	[5M]
7.		Implement the following function $F(A,B,C)=\Sigma m(1,3,5,6)$ using (i) 16:1 MUX and (ii) 8:1 MUX	[L2][CO4]	[10M]
8.		What is magnitude comparator? Design 2-bit comparator by using logic gates.	[L1][CO4]	[10M]
9.		Design a logic circuit to implement the function $F(A, B, C, D) = \sum m(1, 3, 4, 11, 12, 13, 14, 15)$ using a 3-to-8 decoder and external gates. Show the steps.	[L3][CO4]	[10M]
10.		Minimize the function $F(A, B, C, D) = \sum m(1, 3, 4, 11, 12, 13, 14, 15)$ and implement it using an 8-to-1 multiplexer.	[L2][CO4]	[10M]

UNIT IV SEQUENTIAL LOGIC DESIGN

PART-A (2 MARKS)

1.	Define a latch.	[L1][CO5]	[2M]
2.	Draw the truth table of an SR latch.	[L1][CO5]	[2M]
3.	What is a ripple counter? Why is it called asynchronous?	[L1][CO5]	[2M]
4.	Why is the master-slave configuration used in JK flip-flops?	[L1][CO5]	[2M]
5.	Define a shift register. List its types.	[L1][CO5]	[2M]

1.	Draw and explain the circuit of an SR flip-flop using NAND gates.	[L2][CO5]	[10M]
2.	Design a D flip-flop. Explain its truth table and applications	[L3][CO5]	[10M]
3.	Implement a JK flip-flop using NAND gates and explain its operation.	[L2][CO5]	[10M]
4.	Explain the working of a T flip-flop with logic circuit and characteristic table.	[L2][CO5]	[10M]
3.	What is a Master-Slave JK flip-flop? Explain its operation with neat diagram.	[L2][CO5]	[10M]
4.	Distinguish between level triggered and edge triggered flip-flops with diagrams.	[L2] [CO5]	[10M]
5.	Explain how a T flip-flop can be realized using a JK flip-flop.	[L2][CO5]	[10M]
6.	Design a 4-bit asynchronous ripple counter using T flip-flops.	[L3][CO5]	[10M]
7.	What are universal shift registers? Explain with a block diagram.	[L1][CO5]	[10M]
8.	Define setup time and hold time of a flip-flop. With the help of a timing diagram, explain the consequences of violating these requirements.	[L2][CO5]	[10M]
9.	Design and implement 3-bit ripple counter using J-K flip flop. Draw the state diagram, logic diagram and timing diagram for the same.	[L3][CO5]	[10M]
10.	Design a serial-in parallel-out (SIPO) shift register with logic diagram.	[L2][CO5]	[10M]

UNIT V PROGRAMMABLE LOGIC DEVICES AND DIGITAL IC'S

PART-A (2 MARKS)

1.	Write the difference between PROM and PLA.	[L1][CO6]	[2M]
2.	Mention two applications of ROM.	[L1][CO6]	[2M]
3.	What is the function of the IC 74x138?	[L1][CO6]	[2M]
4.	State the number of data select inputs in a 74x155 demultiplexer.	[L1][CO6]	[2M]
5.	State one difference between a decoder and a demultiplexer.	[L1][CO6]	[2M]

PART-B (10 MARKS)

1.	What is ROM organization? Explain about Different types of ROM.	[L1][CO6]	[10M]
2.	Explain the working of a PLA (Programmable Logic Array) with example.	[L2][CO6]	[10M]
3.	Compare three combinational circuits: PLA, PAL and PROM	[L3][CO6]	[10M]
4.	Implement PLA circuit for the following functions $F1(A,B,C) = \Sigma m(3,5,6,7)$, $F2(A,B,C) = \Sigma m(0,2,4,7)$.	[L2][CO6]	[10M]
5.	Implement the following Boolean function using PAL. (i)W(A,B,C,D) = Σ m(0,2,6,7,8,9,12,13) (ii)X(A,B,C,D) = Σ m(0,2,6,7,8,9,12,13,14)	[L2][CO6]	[10M]
6.	Implement the Boolean function $F(A,B,C)=\Sigma(1,3,5,7)$ using IC 74x138 decoder.	[L2][CO6]	[10M]
7.	Implement the function $F(A,B,C,D)=\Sigma(0,2,4,6,8,10,12,14)$ using 74x151 multiplexer.	[L2][CO6]	[10M]
8.	Describe the function of IC 74x148 Priority Encoder with logic diagram.	[L3][CO6]	[10M]
9.	Explain the working principle of a 1-to-4 demultiplexer with IC 74x155 as example.	[L2][CO6]	[5M]
10.	Draw and explain the internal structure of Comparator IC 74x85.	[L3][CO6]	[5M]

Prepared By: M RAJYALAKSHMI